Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Dehydroabietyl-4,5-diphenyl-1Himidazole

Dawei Jiang,^a Min Hong,^b Fei Qiu,^a Jin Zhu^b and Legun Huang^a*

^aSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China, and ^bDepartment of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: huanglg@nju.edu.cn

Received 25 June 2007; accepted 23 July 2007

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.102; data-to-parameter ratio = 11.4.

The title compound [systematic name: 1-(7-isopropyl-1,4adimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-ylmethyl)-4,5-diphenyl-1H-imidazole], C₃₅H₄₀N₂, was obtained via the one-pot three-component condensation of benzil, formaldehyde and dehydroabietylamine, which is a fungal toxin. The two substituent phenyl groups and the imidazole ring form a conjugated system. The dihedral angles between the imidazole ring and the phenyl rings are 70.18 (9) and 12.77 $(12)^{\circ}$. In the crystal structure, there are one intramolecular and two intermolecular hydrogen-bonding $C-H\cdots\pi$ contacts. Furthermore, a weak C-H···N intramolecular hydrogen bond is observed.

Related literature

For related structures of some imidazole derivatives, see: Thiruvalluvar et al. (2007); Seethalakshmi et al. (2006). For related literature, see: Bellina et al. (2007); Gassner et al. (2007); Harris et al. (1992); Zalkov & Girotra (1964).

Experimental

Crystal data

C35H40N2 V = 2822.8 (4) Å³ $M_r = 488.69$ Z = 4Orthorhombic, $P2_12_12_1$ Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-3}$ a = 9.9157 (9) Å T = 273 (2) K b = 12.3466 (11) Åc = 23.058 (2) Å $0.23 \times 0.21 \times 0.15 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	17704 measured reflections
diffractometer	3860 independent reflections
Absorption correction: multi-scan	2295 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.055$
$T_{\min} = 0.983, T_{\max} = 0.996$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	338 parameters
$wR(F^2) = 0.102$	H-atom parameters constrained
S = 0.79	$\Delta \rho_{\rm max} = 0.10 \text{ e } \text{\AA}^{-3}$
3860 reflections	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the imidazole ring and Cg2 is the centroid of the C27-C32 ring.

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C9−H9···N1	0.93	2.51	2.852 (3)	102
$C17 - H17A \cdots Cg1$	0.96	2.85	3.460 (2)	122
$C12-H12\cdots Cg2^{i}$	0.93	2.65	3.570 (2)	170
$C15 - H15 \cdots Cg2^{ii}$	0.93	2.81	3.685 (2)	157
		-	_	

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 2$; (ii) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 2$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors acknowledge the National Natural Science Foundation of China (grant No. 20604011) and the Six-Profession Talents Summit Programme of Jiangsu Province (grant No. 06-A-018) for support of this research.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2025).

References

Bellina, F., Cauteruccio, S. & Rossi, R. (2007). Tetrahedron, 63, 4571-4624. Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Gassner, N. C., Tamble, C. M., Bock, J. E., Cotton, N., White, K. N., Tennev, K., Onge, R. S., Proctor, M. J., Giaever, G., Nislow, C., Davis, R. W., Crews, P., Holman, T. R. & Lokey, R. S. (2007). J. Nat. Prod. 70, 383-390.
- Harris, N. V., Smith, C., Ashton, M. J., Bridge, A. W., Bush, R. C., Coffee, E. J., Dron, D. I., Harper, M. F., Lythgoe, D. J., Newton, C. G. & Riddell, D. (1992). J. Med. Chem. 35, 4384-4392.
- Seethalakshmi, T., Puratchikody, A., Lynch, D. E., Kaliannan, P. & Thamotharan, S. (2006). Acta Cryst. E62, o2803-o2804.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of

Göttingen, Germany. Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Thiruvalluvar, A., Balamurugan, S., Puratchikody, A. & Nallu, M. (2007). Acta Cryst. E63, 01650-01652.

Zalkov, L. U. & Girotra, N. N. (1964). J. Org. Chem. 29, 1299-1302.

Acta Cryst. (2007). E63, o3623-o3624 [doi:10.1107/S1600536807035878]

1-Dehydroabietyl-4,5-diphenyl-1*H*-imidazole

D. Jiang, M. Hong, F. Qiu, J. Zhu and L. Huang

Comment

Dehydroabietic acid is a kind of natural product. A series of carboxylic acid group derivatives show biological activity (Zalkov *et al.*, 1964). Dehydroabietylamine could be obtained from Dehydroabietic acid and is a fungal toxin (Gassner *et al.*, 2007). Imidazoles are common scaffolds in highly significant biomolecules. Imidazole derivatives have been found to possess many pharmacological properties and are implicated in biochemical processes (Bellina *et al.*, 2007). For example, a mevalonate derivative containing a 4,5-diphenyl-1*H*-imidazole group has been shown to reduce cholesterol levels in rats (Harris *et al.*, 1992).

The title compound is a trisubstituted imidazole, and similar to 2-(2-chlorophenyl)-4,5-diphenyl-1*H*-imidazole (Thiruvalluvar *et al.*, 2007), except that the chlorophenyl ring is replaced by the Dehydroabietyl group (Fig. 1). The bond lengths and angles in the title compound are within normal ranges and are comparable to those in other derivatives (Seethalakshmi *et al.*, 2006). The dihedral angle between the imidazole ring and the 2-phenyl or 3-phenyl is 70.18 (9) $^{\circ}$ or 12.77 (12) $^{\circ}$.

In the crystal structure of the title compound the following interactions are observed: one intramolecular hydrogen bonding C—H··· π contact, C17—H17A···*Cg*1 (*Cg*1 is the centroid of the imidazole ring N1/C1/N2/C2/C3), and two intermolecular hydrogen bonds, C12—H12···*Cg*2 (*Cg*2 is the centroid of the abietyl ring C27—C32)ⁱ), and C15—H15···*Cg*3 (*Cg*3 is the centroid of the same ring C27—C32)ⁱⁱ). Details of the hydrogen bonds between molecules are shown in Fig. 2 and Table 1. symmetry codes: (i) -1/2 + x, 1/2 - y, -z; (ii) 1/2 + x, 1/2 - y, -z. And also a weak C9—H9···N1 intramolecular hydrogen bond is observed.

Experimental

A mixture of benzil (2.38 mmol), 0.2 mL formaldehyde (37% aqueous, 2.38 mmol), dehydroabietylamine (3.57 mmol) and ammonium acetate (11.9 mmol) in glacial acetic acid (15 mL) was heated at 385 K for 12 h. Then the dark solution was poured into a copious amount of water and neutralized with KOH until pH = 9. The resulting mixture was extracted with diethyl ether. The solvent of the organic layer was gradually removed by evaporation under vacuum until a solid product was obtained. The solid was then recrystallized from methanol and colorless crystals suitable for X-ray diffraction were obtained (Yield 55%, m.p. 415–416 K).

Refinement

H atoms attached to C atoms were all positioned geometrically and treated as riding on their parent atoms, with C—H = 0.93 - 0.98 Å. The $U_{iso}(H)$ values were set at 1.5 $U_{eq}(C)$ for the methyl H atoms and at 1.2 $U_{eq}(C)$ for the other C-bound H atoms. Due to light atoms of the title compound and the X-ray source used, significant scattering effects were not observed and therefore Friedel pairs were merged.

Figures

Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2. C—H…N and C—H… π interactions in the crystal structure of the title compound. [Symmetry codes for the interactions: (i) -1/2 + x, 1/2 - y, -z; (ii) 1/2 + x, 1/2 - y, -z].

1-(7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren- 1-ylmethyl)-4,5-diphenyl-1*H*-im-idazole

 $D_{\rm x} = 1.150 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 3440 reflections

 $F_{000} = 1056$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.4 - 21.0^{\circ}$

 $\mu = 0.07 \text{ mm}^{-1}$

T = 273 (2) K

Block, colourless

 $0.23\times0.21\times0.15~mm$

$C_{35}H_{40}N_2$	
$M_r = 488.69$	

Crystal data

Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 9.9157 (9) Å b = 12.3466 (11) Å c = 23.058 (2) Å V = 2822.8 (4) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	3860 independent reflections
Radiation source: fine-focus sealed tube	2295 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.055$
T = 273(2) K	$\theta_{\text{max}} = 28.3^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -13 \rightarrow 11$
$T_{\min} = 0.983, T_{\max} = 0.996$	$k = -16 \rightarrow 10$
17704 measured reflections	$l = -30 \rightarrow 30$

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_0^2) + (0.0628P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $(\Delta/\sigma)_{max} = 0.001$ $wR(F^2) = 0.102$ $\Delta\rho_{max} = 0.10 \text{ e } \text{Å}^{-3}$ S = 0.79 $\Delta\rho_{min} = -0.14 \text{ e } \text{Å}^{-3}$ 3860 reflectionsExtinction correction: none338 parametersPrimary atom site location: structure-invariant directPrimary atom site location: difference Fourier mapHydrogen site location: inferred from neighbouringsites

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N2	0.66925 (19)	1.09095 (14)	1.00629 (8)	0.0538 (5)
N1	0.6547 (2)	1.27059 (15)	1.00804 (8)	0.0601 (5)
C4	0.7757 (2)	1.31473 (19)	1.09868 (9)	0.0533 (5)
C9	0.7729 (3)	1.42402 (19)	1.08533 (11)	0.0652 (7)
Н9	0.7405	1.4460	1.0494	0.078*
C8	0.8173 (3)	1.5010(2)	1.12431 (13)	0.0784 (8)
H8	0.8148	1.5739	1.1143	0.094*
C7	0.8648 (3)	1.4709 (3)	1.17748 (14)	0.0813 (8)
H7	0.8956	1.5226	1.2037	0.098*
C6	0.8662 (3)	1.3623 (3)	1.19170 (12)	0.0812 (8)
Н6	0.8970	1.3409	1.2280	0.097*
C5	0.8228 (3)	1.2857 (2)	1.15309 (10)	0.0678 (7)
Н5	0.8249	1.2130	1.1635	0.081*
C3	0.7271 (2)	1.23573 (17)	1.05611 (10)	0.0516 (5)
C2	0.7372 (2)	1.12421 (17)	1.05551 (9)	0.0486 (5)
C1	0.6228 (2)	1.18223 (19)	0.98034 (10)	0.0613 (6)
H1	0.5731	1.1818	0.9461	0.074*
C10	0.7937 (2)	1.04442 (17)	1.09639 (9)	0.0476 (5)
C11	0.9320 (2)	1.0304 (2)	1.10340 (10)	0.0594 (6)
H11	0.9918	1.0733	1.0825	0.071*
C12	0.9804 (3)	0.9533 (2)	1.14101 (11)	0.0719 (7)
H12	1.0730	0.9445	1.1454	0.086*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C13	0.8935 (3)	0.8892 (2)	1.17225 (12)	0.0775 (8)
H13	0.9267	0.8364	1.1972	0.093*
C14	0.7569 (3)	0.9039 (2)	1.16618 (11)	0.0731 (8)
H14	0.6976	0.8617	1.1878	0.088*
C15	0.7072 (2)	0.9802 (2)	1.12860 (10)	0.0610 (6)
H15	0.6144	0.9888	1.1247	0.073*
C16	0.6709 (2)	0.98173 (17)	0.98190 (10)	0.0550 (6)
H16A	0.5825	0.9662	0.9659	0.066*
H16B	0.6870	0.9306	1.0131	0.066*
C17	0.9114 (2)	1.0160 (2)	0.95018 (11)	0.0689 (7)
H17A	0.8950	1.0890	0.9626	0.103*
H17B	0.9704	1.0167	0.9171	0.103*
H17C	0.9528	0.9760	0.9811	0.103*
C18	0.7783 (2)	0.96272 (17)	0.93371 (9)	0.0514 (5)
C19	0.7213 (3)	1.01225 (19)	0.87775 (10)	0.0699 (7)
H19A	0.6262	0.9943	0.8753	0.084*
H19B	0.7282	1.0905	0.8804	0.084*
C20	0.7898 (4)	0.97588 (19)	0.82200 (11)	0.0853 (9)
H20A	0.8821	1.0018	0.8214	0.102*
H20B	0.7431	1.0067	0.7889	0.102*
C21	0.7886 (3)	0.85255 (18)	0.81759 (10)	0.0697 (7)
H21A	0.8330	0.8309	0.7820	0.084*
H21B	0.6959	0.8275	0.8158	0.084*
C22	0.8594 (2)	0.79845 (17)	0.86912 (9)	0.0515 (5)
C23	0.7889 (2)	0.83724 (16)	0.92572 (8)	0.0480 (5)
H23	0.6955	0.8119	0.9224	0.058*
C24	1.0115 (3)	0.8217 (2)	0.86585 (12)	0.0798 (8)
H24A	1.0261	0.8986	0.8653	0.120*
H24B	1.0478	0.7902	0.8311	0.120*
H24C	1.0555	0.7909	0.8991	0.120*
C25	0.8479 (3)	0 77547 (17)	0 97744 (9)	0.0570(6)
H25A	0.9454	0 7811	0.9772	0.068*
H25B	0.8149	0.8065	1 0134	0.068*
C26	0.8063 (3)	0.65741 (17)	0.97348 (9)	0.0598 (6)
H26A	0.8588	0.6158	1 0011	0.072*
H26B	0.7121	0.6511	0.9843	0.072*
C27	0.7121 0.8253(2)	0.60948 (17)	0.91382 (9)	0.072
C28	0.0255(2) 0.8468(2)	0.67438 (16)	0.86538 (8)	0.0468(5)
C29	0.8636(2)	0.62312 (17)	0.81187 (9)	0.0542 (6)
H29	0.8804	0.6649	0.7791	0.065*
C30	0.8558 (2)	0.51188 (17)	0.80653 (9)	0.0533 (6)
H30	0.8673	0.4803	0.7702	0.0555 (0)
C31	0.8312(2)	0.44639 (16)	0.85419 (9)	0.001
C32	0.0312(2) 0.8179(2)	0.49714(17)	0.00716 (9)	0.0103(5)
H32	0.8034	0 4547	0.9399	0.061*
C33	0.7107 (3)	0.2038 (2)	0.80477 (13)	0.0856 (0)
UJJ H33A	0.7334	0.2220 (2)	0.7672	0.0000(9)
H33B	0.7554	0.3220	0.8171	0.120
H33C	0.0237	0.3233	0.8027	0.120*
11550	0.7039	0.2103	0.0027	0.120

C34	0.9531 (3)	0.2747 (2)	0.83175 (16)	0.0957 (10)
H34A	1.0184	0.2912	0.8612	0.144*
H34B	0.9829	0.3036	0.7953	0.144*
H34C	0.9431	0.1976	0.8286	0.144*
C35	0.8192 (2)	0.32465 (17)	0.84779 (9)	0.0556 (6)
H35	0.7929	0.2953	0.8856	0.067*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
N2	0.0570 (11)	0.0462 (10)	0.0582 (11)	0.0065 (9)	-0.0050 (10)	-0.0043 (9)
N1	0.0703 (13)	0.0498 (11)	0.0602 (11)	0.0123 (10)	-0.0059 (10)	-0.0049 (10)
C4	0.0510 (12)	0.0535 (13)	0.0554 (12)	0.0021 (11)	0.0085 (11)	-0.0069 (11)
C9	0.0742 (16)	0.0538 (15)	0.0677 (15)	-0.0009 (13)	0.0077 (13)	-0.0080 (13)
C8	0.0857 (19)	0.0578 (16)	0.092 (2)	-0.0044 (15)	0.0162 (17)	-0.0191 (16)
C7	0.0745 (18)	0.084 (2)	0.086 (2)	-0.0121 (16)	0.0081 (17)	-0.0375 (18)
C6	0.0842 (19)	0.094 (2)	0.0657 (16)	0.0024 (17)	-0.0048 (15)	-0.0212 (16)
C5	0.0788 (18)	0.0612 (15)	0.0635 (15)	0.0029 (14)	-0.0022 (14)	-0.0095 (13)
C3	0.0532 (13)	0.0479 (12)	0.0537 (12)	0.0057 (10)	0.0044 (11)	-0.0028 (11)
C2	0.0460 (12)	0.0510 (13)	0.0489 (12)	0.0029 (10)	0.0024 (10)	-0.0046 (11)
C1	0.0671 (15)	0.0564 (14)	0.0604 (13)	0.0142 (13)	-0.0101 (12)	-0.0020 (13)
C10	0.0483 (13)	0.0470 (12)	0.0474 (11)	0.0000 (10)	0.0000 (10)	-0.0019 (10)
C11	0.0493 (13)	0.0632 (15)	0.0659 (14)	-0.0043 (11)	0.0001 (12)	0.0078 (13)
C12	0.0534 (14)	0.0782 (18)	0.0842 (17)	0.0007 (13)	-0.0122 (14)	0.0134 (16)
C13	0.078 (2)	0.0751 (19)	0.0796 (18)	-0.0042 (15)	-0.0217 (15)	0.0276 (15)
C14	0.0679 (19)	0.0822 (19)	0.0692 (16)	-0.0204 (14)	-0.0070 (13)	0.0220 (15)
C15	0.0503 (13)	0.0744 (17)	0.0584 (13)	-0.0038 (12)	-0.0010 (11)	0.0101 (13)
C16	0.0572 (13)	0.0442 (12)	0.0635 (13)	-0.0030 (11)	-0.0054 (12)	-0.0067 (11)
C17	0.0722 (16)	0.0558 (14)	0.0786 (16)	-0.0147 (13)	0.0122 (14)	-0.0168 (13)
C18	0.0615 (13)	0.0413 (11)	0.0515 (12)	-0.0040 (11)	-0.0003 (11)	-0.0033 (10)
C19	0.105 (2)	0.0441 (13)	0.0606 (14)	0.0086 (14)	0.0028 (14)	0.0024 (12)
C20	0.149 (3)	0.0466 (14)	0.0604 (14)	0.0039 (18)	0.0080 (18)	0.0056 (12)
C21	0.114 (2)	0.0464 (13)	0.0487 (12)	0.0029 (14)	0.0055 (15)	0.0012 (11)
C22	0.0658 (14)	0.0383 (11)	0.0503 (11)	-0.0059 (10)	0.0024 (11)	-0.0028 (10)
C23	0.0536 (12)	0.0425 (11)	0.0478 (11)	-0.0028 (10)	-0.0038 (10)	-0.0016 (9)
C24	0.0783 (17)	0.0618 (15)	0.0995 (19)	-0.0162 (14)	0.0253 (16)	-0.0194 (16)
C25	0.0696 (15)	0.0504 (13)	0.0511 (12)	0.0047 (12)	-0.0087 (12)	-0.0066 (11)
C26	0.0845 (17)	0.0498 (13)	0.0452 (11)	0.0063 (13)	-0.0036 (12)	0.0025 (11)
C27	0.0572 (14)	0.0446 (12)	0.0464 (11)	0.0039 (11)	-0.0035 (10)	-0.0008 (9)
C28	0.0533 (12)	0.0407 (11)	0.0464 (11)	-0.0019 (10)	-0.0020 (10)	-0.0028 (10)
C29	0.0677 (15)	0.0453 (12)	0.0496 (12)	-0.0027 (12)	0.0035 (12)	0.0012 (10)
C30	0.0654 (14)	0.0463 (12)	0.0483 (11)	-0.0017 (12)	0.0041 (11)	-0.0060 (10)
C31	0.0510 (12)	0.0412 (11)	0.0533 (12)	-0.0006 (10)	-0.0027 (11)	-0.0027 (10)
C32	0.0613 (14)	0.0428 (12)	0.0492 (12)	0.0009 (11)	-0.0021 (11)	0.0062 (10)
C33	0.091 (2)	0.0505 (15)	0.116 (2)	-0.0060 (15)	-0.0305 (18)	-0.0086 (16)
C34	0.080 (2)	0.0528 (15)	0.155 (3)	0.0104 (14)	-0.005 (2)	-0.0058 (18)
C35	0.0670 (15)	0.0422 (12)	0.0575 (12)	-0.0035 (12)	-0.0012 (12)	0.0020 (11)

Geometric parameters (Å, °)

N2—C1	1.356 (3)	C19—H19A	0.97
N2—C2	1.382 (3)	C19—H19B	0.97
N2—C16	1.461 (3)	C20—C21	1.526 (3)
N1—C1	1.303 (3)	C20—H20A	0.97
N1—C3	1.389 (3)	C20—H20B	0.97
C4—C5	1.386 (3)	C21—C22	1.533 (3)
C4—C9	1.384 (3)	C21—H21A	0.97
C4—C3	1.465 (3)	C21—H21B	0.97
С9—С8	1.380 (3)	C22—C24	1.537 (3)
С9—Н9	0.93	C22—C28	1.539 (3)
C8—C7	1.365 (4)	C22—C23	1.556 (3)
С8—Н8	0.93	C23—C25	1.532 (3)
С7—С6	1.380 (4)	С23—Н23	0.98
С7—Н7	0.93	C24—H24A	0.96
C6—C5	1.368 (3)	C24—H24B	0.96
С6—Н6	0.93	C24—H24C	0.96
С5—Н5	0.93	C25—C26	1.518 (3)
C3—C2	1.381 (3)	С25—Н25А	0.97
C2—C10	1.474 (3)	С25—Н25В	0.97
C1—H1	0.93	C26—C27	1.509 (3)
C10—C15	1.384 (3)	C26—H26A	0.97
C10—C11	1.392 (3)	C26—H26B	0.97
C11—C12	1.374 (3)	C27—C32	1.397 (3)
С11—Н11	0.93	C27—C28	1.391 (3)
C12—C13	1.375 (3)	C28—C29	1.397 (3)
C12—H12	0.93	C29—C30	1.381 (3)
C13—C14	1.373 (4)	С29—Н29	0.93
С13—Н13	0.93	C30—C31	1.386 (3)
C14—C15	1.372 (3)	С30—Н30	0.93
C14—H14	0.93	C31—C32	1.379 (3)
С15—Н15	0.93	C31—C35	1.515 (3)
C16—C18	1.557 (3)	С32—Н32	0.93
C16—H16A	0.97	C33—C35	1.512 (3)
C16—H16B	0.97	С33—Н33А	0.96
C17—C18	1.523 (3)	С33—Н33В	0.96
С17—Н17А	0.96	С33—Н33С	0.96
С17—Н17В	0.96	C34—C35	1.510 (3)
С17—Н17С	0.96	C34—H34A	0.96
C18—C19	1.536 (3)	C34—H34B	0.96
C18—C23	1.564 (3)	C34—H34C	0.96
C19—C20	1.521 (4)	С35—Н35	0.98
C1—N2—C2	106.31 (18)	С19—С20—Н20В	109.6
C1—N2—C16	126.93 (19)	C21—C20—H20B	109.6
C2—N2—C16	125.78 (18)	H20A-C20-H20B	108.1
C1—N1—C3	104.89 (19)	C20—C21—C22	112.3 (2)
C5—C4—C9	117.4 (2)	C20—C21—H21A	109.1

C5—C4—C3	123.0 (2)	C22—C21—H21A	109.1
C9—C4—C3	119.6 (2)	C20—C21—H21B	109.1
C8—C9—C4	121.3 (3)	C22—C21—H21B	109.1
С8—С9—Н9	119.3	H21A—C21—H21B	107.9
С4—С9—Н9	119.3	C21—C22—C24	109.3 (2)
С7—С8—С9	120.5 (3)	C21—C22—C28	110.67 (18)
С7—С8—Н8	119.8	C24—C22—C28	105.22 (18)
С9—С8—Н8	119.8	C21—C22—C23	108.06 (18)
C8—C7—C6	118.8 (3)	C24—C22—C23	115.12 (19)
С8—С7—Н7	120.6	C28—C22—C23	108.48 (17)
С6—С7—Н7	120.6	C25—C23—C22	109.17 (17)
C5—C6—C7	120.9 (3)	C25—C23—C18	115.28 (17)
С5—С6—Н6	119.6	C22—C23—C18	115.72 (17)
С7—С6—Н6	119.6	С25—С23—Н23	105.2
C6—C5—C4	121.1 (3)	С22—С23—Н23	105.2
С6—С5—Н5	119.4	С18—С23—Н23	105.2
С4—С5—Н5	119.4	C22—C24—H24A	109.5
C2—C3—N1	109.8 (2)	C22—C24—H24B	109.5
C2—C3—C4	130.3 (2)	H24A—C24—H24B	109.5
N1—C3—C4	119.89 (19)	C22—C24—H24C	109.5
N2—C2—C3	105.60 (19)	H24A—C24—H24C	109.5
N2-C2-C10	120.77 (19)	H24B—C24—H24C	109.5
C3—C2—C10	133.5 (2)	C26—C25—C23	109.12 (18)
N1—C1—N2	113.4 (2)	C26—C25—H25A	109.9
N1—C1—H1	123.3	С23—С25—Н25А	109.9
N2—C1—H1	123.3	С26—С25—Н25В	109.9
C15-C10-C11	118.5 (2)	С23—С25—Н25В	109.9
C15—C10—C2	119.39 (19)	H25A—C25—H25B	108.3
C11—C10—C2	122.1 (2)	C27—C26—C25	113.43 (19)
C12—C11—C10	120.3 (2)	С27—С26—Н26А	108.9
C12—C11—H11	119.9	C25—C26—H26A	108.9
C10—C11—H11	119.9	С27—С26—Н26В	108.9
C13—C12—C11	120.7 (2)	C25—C26—H26B	108.9
C13—C12—H12	119.7	H26A—C26—H26B	107.7
C11—C12—H12	119.7	C32—C27—C28	119.45 (19)
C12—C13—C14	119.3 (2)	C32—C27—C26	118.86 (19)
C12—C13—H13	120.4	C28—C27—C26	121.67 (18)
C14—C13—H13	120.4	C29—C28—C27	117.81 (18)
C13—C14—C15	120.7 (3)	C29—C28—C22	119.39 (18)
C13—C14—H14	119.7	C27—C28—C22	122.73 (18)
C15—C14—H14	119.7	C30—C29—C28	121.5 (2)
C14—C15—C10	120.6 (2)	С30—С29—Н29	119.2
C14—C15—H15	119.7	C28—C29—H29	119.2
C10—C15—H15	119.7	C29—C30—C31	121.28 (19)
N2	114.93 (18)	С29—С30—Н30	119.4
N2—C16—H16A	108.5	C31—C30—H30	119.4
C18—C16—H16A	108.5	C32—C31—C30	117.01 (18)
N2—C16—H16B	108.5	C32—C31—C35	121.98 (19)
C18—C16—H16B	108.5	C30—C31—C35	121.02 (19)

H16A—C16—H16B	107.5	C31—C32—C27	122.9 (2)
C18—C17—H17A	109.5	C31—C32—H32	118.6
С18—С17—Н17В	109.5	С27—С32—Н32	118.6
H17A—C17—H17B	109.5	C35—C33—H33A	109.5
C18—C17—H17C	109.5	C35—C33—H33B	109.5
H17A—C17—H17C	109.5	H33A—C33—H33B	109.5
H17B—C17—H17C	109.5	С35—С33—Н33С	109.5
C17—C18—C19	110.9 (2)	H33A—C33—H33C	109.5
C17—C18—C16	110.48 (18)	H33B—C33—H33C	109.5
C19—C18—C16	106.73 (18)	C35—C34—H34A	109.5
C17—C18—C23	113.54 (19)	C35—C34—H34B	109.5
C19—C18—C23	108.67 (17)	H34A—C34—H34B	109.5
C16—C18—C23	106.23 (17)	C35—C34—H34C	109.5
C20-C19-C18	115.3 (2)	H34A—C34—H34C	109.5
С20—С19—Н19А	108.4	H34B—C34—H34C	109.5
C18—C19—H19A	108.4	C34—C35—C31	111.10 (19)
С20—С19—Н19В	108.4	C34—C35—C33	111.2 (2)
C18—C19—H19B	108.4	C31—C35—C33	111.71 (19)
H19A—C19—H19B	107.5	C34—C35—H35	107.5
C19—C20—C21	110.3 (2)	C31—C35—H35	107.5
С19—С20—Н20А	109.6	С33—С35—Н35	107.5
C21—C20—H20A	109.6		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C9—H9…N1	0.93	2.51	2.852 (3)	102
C17—H17A…Cg1	0.96	2.85	3.460 (2)	122
C12—H12···Cg2 ⁱ	0.93	2.65	3.570 (2)	170
C15—H15···Cg3 ⁱⁱ	0.93	2.81	3.685 (2)	157
(1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	12/2 12			

Symmetry codes: (i) x-1/2, -y+3/2, -z+2; (ii) x+1/2, -y+3/2, -z+2.

Fig. 1

